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THE 

We consider, in a linear formulation, the problem concerning the laminar mixing 

layer on the boundary of two flows of an in~rn~~ssible liquid with a small dif- 
ference in their Bernoulli constants ; we assume the presence of longitudinal pres- 
SLUT gradient. We determine the velocity distribution in the mixing layer, the 

magnitude of the displacement thickness and the momentum loss thickness. For 
the case in which there is no longitudinal pressure gradient we calculate the force 
effect of the one flow on the other. 

1, As the Reynolds number R -+ co , it follows, from an analysis of the possible limi- 
ting flows of a viscous liquid with stationary discontinuity zones (see [I]), that the dis- 
continuity A in the Bernoulli constant at the boundary of the discontinuity zone tends 

to zero as R -+ CO (A = (u12 - 2~27 I u,..,2, where u1 and u2 are the velocities on the outer 
and inner sides, respectively, at the boundary points, and tl, is the velocity of the unper- 
turbed flow} and acquires a value calculated from the parameters of the mixing layer 

when 6 4 1 (Fig. 1, a and b). 

a -'-i y 1 

Fig, 1 

For large Reynolds numbers the laminar mixing layer on the boundary of two planar 
flows of an incompressible liquid is described by the Prandtl boundary layer equations, 
subject to the boundary and initial conditions 

u (z) = u1 (zf, y = “; u (x) = % (x), Y = - 00; u (0, Y) = g, (g) &I) 

Here, and in the sequel, U. and v are the com~nents of the velocity in the directions 
of the 5 and y axes of a Cartesian coordinate system, and ‘p (y) is the distribution of 
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the velocity component u for x = 0. Within the limits of boundary layer theory the 
pressure across the mixing layer is constant, so that according to Bernoulli equation we 
have the following condition to be imposed on the functions u1 (z) and u2 (5): A = CCXIS~ 

along the whole mixing boundary. 

In the case of a boundary layer near a rigid wall the longitudinal velocity component 
always changes by an amount equal to the velocity at the outer boundary of the layer ; 
for this reason linearization of the equations and boundary conditions for this component 

is not possible, On the other hand, in the case of the mixing layer, when the difference 
of the velocities “1 (z) - U, (z) is small in comparison with the velocity itself (or, equi- 

valently, when A (( if, linearization of the equations and bo~da~ ~ndititio~ is pas- 
sible. To linearize the problem we write the velocity in the mixing layer in the form 

u (z, Y) = a1 fzf + E (z, Y) (here E (s, y) is a small addition to the velocity on the outer 

boundary of the mixing layer}. Assuming that v (z, 0) = 0, it follows from the continu- 
ity condition for an incompressible liquid that t, 

* a& 
2)(x, 1)=--_y$- -@j/ 

! (1.2) 
0 

(Y = 0 is the separating stream line). Substituting Eq, (1.2) into the equation of the 
boundary layer and replacing u by u 1 (x) _t E (z, Y), we obtain, upon discarding the pro- 

duct of small quantities, the following linear equation for E (5, y) : 

Cl.31 

We ROW transform the boundary conditions (1. l), written for the velocity component 
U, to a form corresponding to the new unknown quantity E (z, Y): E = 0 and 8~~ = 0 
for Y = 03. For Y = - ~13 the velocities u1 (z) and +. (2) are related by the condition 

of equality of the pressure on the upper and lower 
boundaries of the mixing layer (Fig. 1 b) ; therefore. 
using the Bernoulli equations for the upper and lower 

flows and neglecting the term involving sz (x, --CO), 

we have E (.z, - 00) u1 = 1/tua2 A = const 

Thus, if the difference u1 (I) - up (x) is small, the 
problem concerning the determination of the velo- 

city in the mixing layer, in a linear formulation, 
reduces to the solution of Eq, (1,3), subject to the 
boundary and initial conditions 

(1.4) 

Fig. 2 
e u1 = 0, y = DO; EU~ = 1/2~.,ZA, y = - 00; 

E (0, y) = ‘I-J (y) __ ul (0) 

2. For the solution of the problem formulated above we place the coordinate origin 
at the beginning of the mixing layer and introduce the independent variable 

E = Y.v-U, 1 [vf (x)1 

(f (5) is a function which will be defined later). Replacing the partial derivatives in Eq, 

(I, 3) by derivatives with respect to 5, we obtain the equation for eul and the correspn- 
ding boundary conditions in the form 
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dz (w) 4 d (ml) -_ 
dE2 I u1f(z) d 

dfx = - 1~~ --gyln [u~~?~(z)] (2.1) 

E"l=07 c = w; &U1 =1/2uoo2& E = _ w (2.2) 

In order that the solution of Eq, (2.1) for eul may depend only on E, it is necessary that 
the left and righ sides of Eq. (2.1) be equal to a certain constant C. The solution of the 
equation corresponding to the left side of (2.1) with the boundary conditions (2.2) exists 
only for c < 0 and has the form 

(2.3) 

As the solution of the equation corresponding to the right side of (2.1) is the function 

f (x) = - 2c 3 5 ul dx + cl/u: 
0 

(2.4) 

Having in mind a comparison of our results with the numerical solutions given in [2] 

of the complete boundary layer equations for the laminar mixing layer in the absence 
of a longitudinal pressure gradient, we choose the constants c and ~1 so that in the ab- 

sence of a pressure gradient (u, = IL_} the variable E will coincide with the dimension- 
less variable q used in [O]. Thus, it is necessary to take c = - ‘la and ci = 0. We note 

that in Eq. (2.3) the quantity El/- C does not depend on an actual value for c ; hence, 

neither does the quantity eul . 

Using the equation obtained above for the velocity distribution, we calculate the dis- 

placement thickness 6,* and the momentum loss thickness 6a* 
m 

(w - u) ay = 
2 pztL12 jyi2 exp (-$-) dt dy= 

‘? 
0 

f (z) uJozA 

2 Jfa- 
u1 f 
2R% ' 

co 

lfJ1**= 

O 

Neglecting the term involving 62, we find, within the scope of the linear theory, that 

-cc -uJ 

( 1 ’ I 
1 ’ 

b2* -z - 

W 
(uz--)&J, &p* = ---$ 

112 I 
u (m--)dy 

0 0 

3, In the absence of a longitudinal pressure gradient ( u1 = u._,) we have f(z) = E, 

F = Y 1/u, / (~4 , and 

& (2, 7J) m= -. (3.1) 

In Fig, 2 we show the variation of the velocity in the mixing layer for u, / ur = 0.5, 
corresponding to the expression (3.1) (dashed curve) ; for comparison we also show the 
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results, taken from [2], obtained in numerically integrating the complete boundary layer 

equations (solid curve). In the Table 1 we give values of the velocity on the separating 

0 
0.5 
0.75 

[‘I 

0.5873 
0.7657 
0.8784 

Table 1 

u (“, 0)/Q 
I 

stream line (y = O), obtained from the expres- 
sion (3.1) and from the numerical calculations 

in [Z], for various values of u2 / u1 . It is evi- 
dent that the expression (3.1) describes the velo- 

(3.1) 

0.500 
0.750 
0.875 

city distribution in the mixing layer quite sati- 

sfactorily. 
For the ease of a mixing layer without pressure 

~adient, we have 

&* A 
- = 2 $f2XAZP’ z 

I&e cX is the dimensioniess coefficient of the force effect of one flow on the other, 

The corresponding quantities for the boundary layer on a plate are 

al* 1.72 1.328 
-zz------ -- 

% R;¶ ’ CX - R; 

We note that the law of velocity distribution in the laminar mixing layer when the pres- 

sure gradient is absent (3.1) was established for the first time in 131, It was obtained here 
as a particular case of the law for the mixing layer in the presence of the pressure gra- 
dient, A linearized solution of the boundary layer equation in the absence of 1ongi~i~I 
pressure gradient has also been used in the solution of other problems concerned with 

laminar liquid and gas flows (see, for example, ~41). 
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